Profile Confidence Intervals for Contingency Table
Parameters

Joseph B. Lang

July 2005

Technical Report No. 351



Profile Confidence Intervals for Contingency Table Parameters

Joseph B. Lang

Department of Statistics and Actuarial Science
University of lowa, Iowa City, IA 52245 USA, joseph-lang@uiowa.edu

July 20, 2005

A general investigation of profile score and profile likelihood confidence intervals for contin-
gency table parameters is carried out. The investigation method, which is based on the theory
of multinomial-Poisson homogeneous models, lends itself to a general computational algorithm
and is applicable for a broad class of parameters and sampling schemes. The method also af-
fords useful theoretical results on estimability and sampling plan invariance. The computational
algorithm described herein is straightforward to implement and avoids two main limitations of
existing algorithms. The theoretical results make clear how inferences depend on the sampling
plan and the characteristics of the estimand function. Among other things, these results lead
to practical ways to avoid “estimating” non-estimable parameters, a practice that is all too
common with current contingency table software. Examples of profile confidence intervals for a
variant of the gamma measure of association, global odds ratios, a difference between marginal
means, and & marginal dispersion measure illustrate the method.
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1 Introduction

The contingency table literature suggests that profile score and profile likelihood confidence
intervals generally have better coverage properties than their Wald counterpart-see for example,
Mee (1984), Miettinen and Nurminen (1985), Bedrick (1987), Gart and Nam {1988a), Meeker
and Escobar (1995), Newcombe {1998a,b), Agresti and Coull (1998), Agresti and Caffo (2000),
Brown et al. (2001), Agresti (2002:77), Tsimikas et al. {2002). The conclusions in this existing
literature serve as the motivation for the current paper.

We carry out a general investigation of profile score and profile likelihood confidence intervals
for contingency table parameters. The investigation method, which is based on the theory of

multinomial-Poisson homogeneous {(MPH) models (Lang 2004), lends itself to a general com-
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putational algorithm and is applicable for a broad class of parameters and sampling plans.
Rather than adding to existing literature by again comparing coverage properties of different
intervals, the current paper has two distinct primary objectives. The first is to describe a gen-
eral MPH-based algorithm for computing a profile score or likelihood interval for scalar-valued
estimand S(7), where 7 is a vector of contingency table probabilities. The second objective is
to give theoretical results oﬁ the applicability of the MPH method, parameter estimability, and
sampling plan invariance.

Profile intervals have been used on a case-by-case basis for several different contingency
table estimands, including a single binomial probability, odds ratio, relative risk, and risk
difference. The examples in the literature, several of which are summarized in Sections 2 and 3,
use computational approaches that have two main limitations: they are case-specific and they
are applicable for a restrictive class of parameters. The computational approach proposed in
this paper avoids these limitations. This paper’s theoretical results make clear how inferences
depend on the sampling plan and the characteristics of the estimand function. Among other
things, these results lead to practical ways to avoid “estimating” non-estimable parameters, a
practice that is all too common with current contingency table software.

The paper is organized as follows: Section 2 gives several examples from the literature where
profile score or likelihood confidence intervals have been considered. Section 3 gives qualitatively
different examples that have not been considered previously in the literature. Section 4 gives
‘a very brief overview of the theory underlying profile confidence intervals., Section 5 describes
the wide variety of sampling plans under which the method outlined in this paper is applicable.
Section 6 describes a new approach, and gives an algorithm, for computing profile intervals
that is based on the theory of multinomial-Poisson homogeneous (MPH) models. Section 7
discusses the technical conditions under which the MPII method is applicable. Section 8 gives
some useful theoretical results on estimability and sampling plan invariance. Section 9 revisits
the examples of Section 3 and computes and compares the profile and Wald intervals. Section

10 gives a brief discussion.

2 Examples of Likelihood-Explicit Estimands

Practically speaking, there are two main types of estimands: (i) Likelihood-explicit estimands

are those that afford a simple explicit reparameterization of the data likelihood in terms of
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the estimand and nuisance parameters. (ii) Likelithood-implicit estimands are those that do
not afford such a simple explicit reparameterization. The majority of the examples in the
contingency table literature restrict attention to likelihood-explicit estimands. This section
gives several, mostly context-free, examples.

Ezample 2.1 {Difference between Marginal Probabilities). Define the 2 x 2 table probabilities
as 7; = P(A = 1,B = j),4,7 = 1,2. Several researchers have discussed profile score or
likelihood intervals, or closely-related variants, for estimand S(7) = 714 — 741 (Quesenberry
and Hurst 1964; Lloyd 1990; May and Johnson 1997; Tango 1998, Agresti 2002:411). That this
estimand is likelihood-explicit follows because S(7) = A if and only if 7 = (m, 70 + A, m9,1 —
m — 212 — A), where i = (1, 721) is a nuisance parameter that lies in a space that contains a
2-dimensional rectangle. n

Ezample 2.2 (Relative Difference). Define the 2 x 2 table probabilities as 7; = P(B = j|A =
i}. Gart and Nam (1988b) discuss profile score intervals for estimand S(7)} = {ry — 711)/711.
This is a likelihood-explicit estimand because S{7) = A if and only if 7 = (m,1-m(1+AMm, 1-
(1 + A)n), where n = 1. -

Ezample 2.8 (Risk Rate Difference for Incomplete Table). Tang and Tang (2003) consider
data on two-step tuberculosis skin testing. Define the 2 x 2 table probabilities as 7; = P(TB1 =
i, TB2 = j), where TBk = 1 or 2 as tuberculosis test k is negative or positive. If a patient tests
positive the first time, it is assumed they would test positive the second time, so they are not
tested again. This leads to the structural zero 75, = 0. Tang and Tang (2003) show how to
compute the profile score interval for the estimand S{7) = 74 —71, /714, here, 7 = (711, 712, T22)-
Notice that S{r) = A if and only if 7 = (n* — pA, (1 + A) — 5%, 1 — ), where np = 71, u

Ezample 2./ (Mean of {0,1,2} Variable). Define the 1 x 3 table probabilities as ~, = P(R =
i),7 = 0,1,2. Newcombe (2003) considers profile intervals for estimand S(7) = Orp+ 17, + 27 =
E{R). Notice that S(7) = A if and only ifr T=(1-A+nA-27), where n=7. g

Other examples in the literature consider estimands such as a single binomial probability
(e.g. Agresti and Coull 1998, Newcombe 1998a, Brown et al. 2001), the relative risk (e.g.
Bedrick 1987), and the difference between two probabilities when estimates are from indepen-
dent samples (e.g. Newcombe 1998b, Agresti and Caffo 2000). These examples, along with
Examples 2.1 through 2.4, all share the important characteristic that there exists an explicitly

invertible one-to-one function of the form 7 — {S(7),n), where 17 is a vector of nuisance pa-
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rameters. This means that the data log likelihood can be explicitly reparameterized in terms
of the estimand of interest S{+) and nuisance parameters. This reparameterization is exploited

in the computation of the profile confidence intervals in all of these examples.

3 Examples of Likelihood-Implicit Estimands

As arule, examples in the profile confidence interval literature use likelihood-explicit estimands.
Rare exceptions to this rule include the estimands in Tsimikas et al. (2002) and Lang {2005).
Tsimikas et al. considered estimands of the form S(7) = 77 G4 that arise in a receiver operat-
ing characteristic (ROC) curve setting. Here, G is an upper-triangular matrix of constants, the
table probabilities in ) and 7, give the distributions of ordinal rating variables, and estimand
S(7) is an area under a non-parametric ROC curve. This estimand does not afford a simple
explicit reparameterization of the data likelihood; that is, the estimand is likelihood-implicit.
Thus, the computational methods used for the likelihood-expiicit examples of the previous sec-
tion are not applicable. Tsimikas et al. (2002) address this problem and describe an algorithm
that uses feasible sequential quadratic programming optimization for computing a profile like-
lihood Conﬁdence interval for the estimand. To illustrate the utility of maximum likelihood
estimation for homogeneous linear predictor models, Lang (2005) computed profile likelihood
Intervals for two different likelihood-implicit estimands, a model-based conditional probability
and a difference between marginal conditional probabilities.

This section gives several more examples that use likelihood-implicit estimands.

3.1 Measures of Association for Case-Control Data.

Ezample 3.1. Agresti (2002} describes a case-control study of the relationship between smoking
and myocardial infarction. Let A be the disease-status variable (1=control, 2=case) and let B
be the level-of-smoking variable {1="no cigarettes”, 2="1-24 cigarettes per day”, 3="“over 24
cigarettes per day”). Define the 2 x 3 table probabilities 7;; = P(B = jiA = i),i = 1,2;5 =

1,2,3. In tabular form,

B
1 “no cigs” 2 “1-24 cigs” 3 “over 24 cigs”
A 1 “control” 11 Tio 13 1.0
2 “case” To1 Tag 723 1.0

A Modified Gamma Measure of Association. Let B; ~ B|{A = i},i = 1,2, be inde-
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pendent random variables. The estimand v* = P(B, > B,1B; # B;) is a reasonabie measure
of association between A and B. In words, if a case and a control subject are independently
sampled, given that their smoking levels are different, the chances that the case patient smokes
more than the control patient is 4*. The estimand v* can be written as
v = S(r) = 711(1’22 -+ 73'23) + Ti27T23.
— 2iz: T2iTu

This estimand is a relatively complicated function of the table probabilities in 7. It can be

considered a likelihood-implicit estimate because it is not obvious how to find an explicitly
invertible one-to-one function of the form T — (S(+),n), where 7 is a vector of nuisance
parameters. Moreover, this estimand is not of the quadratic form considered in Tsimikas et al.
(2002). Thus, the available methods for computing profile intervals are not directly apphicable.
Global Odds Ratios. The estimand +* is a measure of association that exploits the ordinality
of smoking level B. The global odds ratios are alternative measures of association that exploit
ordinality. Let

o = MdA=2AB22) o odds(A=2B>3)

YT odds(A=2[B <2) odds(A = 2|B < 3)’

That is, for example, the odds of myocardial infarction (A = 2) for those smoking at least

one cigarette a day (B > 2) is )y times that of the odds of myocardial infarction for those
not smoking at all {B < 2). We can re-express these odds ratios as functions of the table

probabilities. Specifically, we can “invert” the conditional probabilities to obtain
odds(B > 2|A=2)  7(7o2 + To3)

0 = = =
! odds(B = 2|A = 1) T21(T12 + T13) {7

q, o 00ds(B>3A=2) _ (ru-+ 7o)
> T odds(BZ3lA=1)  (ra1 + Ta)Tis
Like ~v*, these global odds-ratio estimands are likelihood-implicit.

= SQ(T).

Agresti (p 98, 2002) gives data for a random sample of n; = 62 controls and ny; = 4 cases.

The counts in tabular form are B
1 “no cigs” 2 “1-24 cigs” 3 “over 24 cigs”
A 1 “control” 25 25 12 62
2 “case” 0 i 3 4

These counts are viewed as realizations of two independent multinomial vectors,
Y1~ mult(62, 711, T2, 1) and Y2 ~ mult(4, 721, Toz, T23). In Section 9.1, these data are used
to compute Wald, profile score, and profile likelihood confidence mtervals for each of the three

estimands v* = S(7), {4 = S1{7), and §y = Sa{7).
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3.2 Marginal Mean and Dispersion Estimands

Ezample 3.2. A recent issue of a popular golf magazine gave expert ratings of several different
golf clubs. Let R; and R; be a randomly sampled expert’s ratings (1=low, 2, 3, 4, 5=high)
for two particular clubs. Define the 5 x 5 table probabilities as 7; = P(R) =i, Ry = j),1,j =
1,2,3,4,5. An estimand of primary interest is the difference between the mean ratings, E(R; )
E(Ry) = 8(1) = X0 iy — E?:I J7+j. Other estimands of interest include the mean ratings,
E(R)) = 5(1)= %2, imy and B(Ry) = So(7) = Y51 J7+;, and the dispersions of ratings,
D(Ri) = S3(r) =130, 7%, and D(Ry) = Sy(7) = 1~ T, 7%;. It is reasonable to classify
each of these estimands as likelihood-implicit.

For a random sample of 25 experts, the ratings can be summarized as counts in tabular form

Ry

1 2 3 4 5
1{0(0|10101 0|0
210(0|0101 0] 0
R, 3[31070(0[ 011
410i0|1|1|1 0% 2
510101022022
1 0 1 3 20 25

These counts are viewed as realizations of Y ~ mult(25, 731, T12,...,755). In Section 9.2,

these data are used to compute Wald, profile score, and profile likelihood confidence intervals

for each of the estimands, S(7), Si(7),..., Sa{r).

4 Test-Inversion Confidence Regions

Suppose that data vector y is a realization of random vector Y, which has a distribution
that depends on parameters in €. A reasonable approach for computing a confidence region for
estimand S(#) is based on inverting tests of Hp : S(8) = A versus Ka : §(68) # A. Specifically,
if, for each candidate A, test statistic D(Y, A) has a null limiting distribution that is free of €
and P(D(Y,A) > cv|Ha) = o, then C(y) = {A: D(y,A) < cv} is an approximate level 1 — o
confidence region for S{f). Confidence region C(y) for S(8) comprises all those values A for
which the hypothesis Ha : 5(8) = A would not be rejected. Casella and Berger (Sec 9.2, 1990}
gives a nice introduction to test-inversion confidence regions.

For the contingency table settings considered in this paper, the model parameter @ is com-

posed of (o, T), where o is a collection of expected sample sizes and T is a collection of table
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probabilities. The estimands we consider have the form S(7); they do not invelve .

There are many candidate test statistics D for testing Hp : S(7) = A versus K : S{7) # A
int the contingency table setting. Three of the more common candidates are the Wald, Pearson’s
X?, and the G* (Bishop et al. 1975) statistics. Other examples include the power divergence
statistics of Read and Cressie (1988).

Wald statistics have the form W2(Y,A) = (9(S(7)) —g(4))?/8,5, where g is some differen-
tiable one-to-one function, &3, is an approximate variance of g(S(7)), and 7 is the unrestricted
MLE; i.e. T is the vector of sample table proportions. Note that there is no single Wald statistic
because different choices of ¢ lead to different Wald statistics.

The statistics X? and G* can be be expressed in terms of (&, 7) or in terms of the expected
table counts p = E(Y). This follows because there is an explicit one-to-one correspondence
between p and (o, ), as shown in Section 5.3 below. Here we choose the simpler g parame-
terization. Pearson’s X? statistic has the form X?*(Y, fi(A)) and the G2 statistic has the form
G*(Y, g(A)), where fi(A) is the MLE under Ha : S(7) = A,

XY, 1) = (Y — w7 diag™ (u)(Y — p), and GH(Y, ) = 2Y7 log(Y/p).

For testing Ha vs. unrestricted K4, it can be shown that Pearson’s X? is the score statistic
and G? is the likelihood ratio statistic for all of the sampling models considered in this paper.
Section 8.1 below argues that when the estimand function S(-) satisfies mild conditions,
and when Ha holds, the Wald, score, and likelihood ratio statistics W2, X2, and G? have
approximate central x?(1) distributions when the expected sample sizes are large. These results
hold for the wide variety of sampling plans considered in this paper. It follows that
WCLE) ={A : Wiy,A) < 2(1)

PSCI(y) ={A : X2(y,B(A)) < xa(1)} (1)

PLCI(y) ={A : G*(y,R(4)) £ xa(1)}
are approximate 1 — o level confidence intervals for S(7). Here, x2(1) is the 1 — & quantile of
the x2(1) distribution.

The confidence intervals PSCI{y) and PLCI(y) in (1) are referred to as the profile score
confidence interval and the profile likelihood confidence interval, respectively. The adjective
profile is used for the following reason. Let 7 be the set of all possible table probability
vectors 7. Both test statistics have the form Dy, A) = D*(y, i(A)), where D*(y, uy(7o)}
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is the test statistic for testing the simple null Hy : 7 = 79 vs. Hy : 7 # 7. The one-
dimensional curve {{F(A), D*(y, A(A)) : A € S(7)} lies on the dim(7)-dimensional surface
{(7, D*(y,p0(7))) : T € T}, Thus, the set {(A, D*(y,A(A)) : A € §(7)}, which determines
the confidence region for S(7), gives a profile of test statistic D* with respect to A. In contrast,
the test-inversion confidence interval WCT based on a Wald statistic is not generally a profile
confidence interval,

Remark 1. In the likelihood-ratio case, the D*(y, 1(A)) profile curve is an affine trans-
formation of the profile log likelihood £,(Aly) curve (cf. McCullagh and Nelder 1989:254-5).
Specifically £,(Aly) = £(fily) — 3D*(y, i(A)), where £(-fy) is the log likelihood and [ is the
unrestricted ML estimate of pt.

Remark 2. So as to avoid confusion with terminology used in the profile likelihood literature,
the reader should note that in this paper the profile score confidence interval is based on the
profile of the score statistic X*(y, fi{A)) as described above. It is not based on the profile score
function (cf. DiCiccio et al. 1996), which has the form s,{Aly) = d¢,(Aly)/8A.

Remark 3. Confidence regions for scalar estimands obtained by inverting tests are most
often, but not always, intervals. For this reason, we simply refer to the regions as intervals.
{See Casella and Berger, Sec 9.2, 1990).

In contrast to profile score and profile likelihood intervals, Wald intervals can always be

analytically inverted. Specifically, it is easy to see that

WCI,(y) = { A : g(S(7)) — 28505 < 9(B) < 9(S(F)) + 2°Fpos} = g~ {9(S(F)) £ 2B yes),
(2)
where z* is the 1 — /2 quantile of the standard normal distribution. Moreover, because the
Wald statistics do not use the ML estimate of S{7) under Ha, the computation is simple
for both likelihood-explicit and likelihood-implicit estimands. This computational advantage
explains the popularity of the Wald intervals, which are the default for fnost statistical packages.
However, this advantage is less of an issue with today’s computing power and generally does not
outweigh the disadvantages such as poor coverage properties, lack of range-preserving property,
and dependence on choice of parameterization.
In contrast to Wald intervals, and owing to the invariance property of MLE's, profile score
and likelihood intervals are invariant to the choice of parameterization. With Wald intervals,

one must be wary of the choice of parameterization, because many do not work very well. For
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exampie, a poor choice of g in W; can give a Wald interval that inciudes values that fall outside
the range of candidate S{7) values. Also, a poor choice can lead to a Wald interval with coverage
probability that is very far from the nominal probability. Moreover, it has been argued (Meeker
and Escobar, Section 2.3, 1995) that profile score and likelihood intervals generally work as well

as, or better than, the Wald interval based on the best choice of parameterization .

5 Multinomial-Poisson Sampling Plans

Confidence intervals obviously depend on the sampling scheme and corresponding sampling
distribution of the data. Contingency table counts can be the result of many different sampling
schemes. As examples, stratified random sampling with fixed sample sizes leads to product
multinomial counts; and simple random sampling with random sample size that follows a Pois-
son distribution leads to independent Poisson counts. This section gives a formal description

of a broad class of sampling plans and corresponding sampling distributions.

5.1 Sampling Plans and Sufficient Table Counts

Let composite categorical variable ' have support on ¢ distinct values; without loss of generality,
we label these values {1,2,...,¢c}. Let w denote the joint distribution of C. That is, C ~ =
means that P(C' =4} = m, © = 1,...,c. As an example, C could represent two categorical
variables, viz. C' = (A, B), and have support on the 4 distinct values {(1,1), (1,2), (2,1), (2,2)}.
Without loss of generality, the 4 distinct values could be re-labeled as {1, 2, 3,4}. As is the
case in this example, we will follow the convention of always listing support point labels in
lexicographical order.
Sampling Plan. Let {C' € ¢}, k= 1,..., K correspond to X > 1 disjoint strata. Specifically,
¢ My =@ and UL ¢, = {1,2,...,c}. A stratified random sample is taken from these strata.
‘The sample size for stratum &, say Ny, is either a priori fixed, Ny, = ny, or is a Poisson random
variable, Ny ~ Poisson{6). It is assumed that the sample sizes are independent of each other
and of the responses.

The model parameters corresponding to this sampling plan include the expected sample sizes
or = E(Ny) and the conditional probabilities that describe the distributions of C|{C € ¢},

for k =1,..., K. More specifically, let k(i) indicate the stratum in which C value 7 resides; so
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that 1 falls in ¢y(;). Define the table probabilities as
= P(C=?,IC € ¢k(i))1 7 = 1,.. LG

It follows that the model parameters include the expected sample sizes o and the table proba-
bilities T.

Sufficient Table Counts. Let random variable Y; be the number of sampled units with € value
equal to i. For any of the sampling plans considered herein, the table countsin Y = {¥,...,Y.)
are sufficient for (o, 7). By the sufficiency principle (e.g. Casella and Berger, p. 247, 1990,

we base our inference on the sampling distribution and observed value of Y.

5.2 A Formalization: The Sampling Plan Triple.

Every sampling plan described in the previous subsection can be uniquely identified by a sam-
pling plan triple (Z,Zr,n), which comprises a population matriz, a sampling constraint matriz,
and a vector of fized sample sizes.

The ¢ x K population matriz Z indicates stratum membership in that the A™* column of Z
indicates which values of C are included in strata {C € ¢}. In symbols, the (i, k)™ element of
Zis (L) = I( € ¢dx).

Let Q({a1,...,04}) = [€a,,--- ,€ap)xg, Where 1 S g < g < +++ < ag < K and e, is the
elementary vector with a ‘1’ in the a* position and ‘O's everywhere else. Define Q(B) = 0.
Suppose that sample sizes in strata k; < -+ < k; are fixed and sample sizes in strata k] <
-+ < ky are random; here, f +r = K. Let n = (ng,... ,Tx,) be the corresponding wector of

fized sample sizes. Define

Qr =Q({k1,--, k}) and Qp=Q({K],...,k})

The sampling constraint matriz Zp is defined as Zp = ZQ p. That is, Zp comprises those
columns in Z that correspond to strata with fized sample sizes. By convention, when n§ sample
sizes are fixed, Zr and n are set equal to 0. It is also useful to label as Z g the complementary
collection of columns in Z that correspond to strata with random sample sizes. Specifically, let
Zp = ZQg. By convention, when no sample sizes are random, Zy, is set equal to 0.

The components in the sampling plan triple (Z, Zp,n) are useful for theoretical, computa-
tional, and notational reasons (see Lang 2004). Some examples include: (i) The table probabil-

ities can be expressed as a simple function of the joint probabilities, viz. 7 = D™YZZ77)x =
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t{mr). (ii) The structural constraints on the table probabilities can be expressed as Z7r = 1.
(iii) The expected counts have the form E(Y) = D{Zeo)7. (iv) The variance of the counts is
var{Y) = D(Zo)[D(r) ~ D(7)ZrZLD(7)]. (v) The vector of sample sizes (fixed and random)
is ZTY = (M,..., Ng)T. (vi) The vector of fixed samples sizes is ZLY = n.

5.3 Sampling Distribution of Table Counts

Expected Sample Size, Table Probability Parameterization. For sampling plan {Z, Zp, n},
the vector of counts Y comprises independent blocks of multinomial and/or Poisson compo-
nents. Specifically, counts that correspond to a stratum with fixed sample size follow a multino-
mial distribution; counts that correspond to a stratum with Poisson sample size are independent
with Poisson distributions; and stratum-specific blocks of counts are independent. The proba-

bility density of Y can be written as
P(Y =y) = c*(y)exp{y"log T + y" Zrlog(Q}o) — 1"QRo}H (y € V), (3)

where ¢*(y) = nl/y! if Zp # 0, and ¢*(y) = 1/y!if Zr = 0. Here, (z1,...,2m) = 212! - 2]
The support of Yis ¥ = {y : Zhy =n, 3, =0,1,...}. Weuse Y ~ MP(o,7T|Z,ZF,n) to
denote a random vector with this probability density function. Candidate values of (o, T) lie

in S x 7, where
S={o:0=Qm+Qps, 6§>0} and T={r: Z77=1, r >0} {4)
Mean Parameterization. If Y ~ MP(e,7|Z,Zp,n) then the mean is
w=EY)=m(o,7)=D(Zo)T.

The mean function m has several useful properties, including (i) m : § x 7 — m(S x 7) is
one-to-one; (ii) m™! : m(§ x T) — & x T is defined as m~1{p) = (ZTu, D“l(ZZT,u),u) ; and
(i) m(§ xT) = {p: ZZp=mn, u> 0}

Because the mean vector is a one-to-one function of the expected sample sizes and table
probabilities, we can re-parameterize the table count model in terms of p. Specifically, P{Y =
y) = cly)exp{yTlogu — 17ZTu}I(y € ¥), where c(y) = nlexp{—nTlogn}/y! if Zp # 0
and c(y) = 1/y!if Zp = 0. The support of Yis ¥ = {y : Zfy = n, y = 0,1,...}. We
use Y ~ MP(ulZ,Zp,n) to denote a random vector with this probability density function.
Candidate values of p liein m(S x T) = {u: ZFpu=n, p > 0}.



Profile Confidence Intervals 12

6 Computing Profile Confidence Intervals

For a likelihood-explicit estimand S(7) like those in Section 2 there exists an explicitly invertible
function of the form 7 — (S(r), n). More formally, there exists an explicit f such that $(r) =
A it 3peN 3 T =1f(An), wherenis a (dim(7) — 1) x 1 vector of nuisance parameters
and AV is a set that contains a dim(7) — 1 dimensional rectangle. Here, 7 is the set defined in
(4).

The existence of f implies that the score and likelihood ratio statistics can be easily evaluated.
In particular, the log likelihood corresponding to density (3) can be reparameterized and the
following identity can be exploited:

J,g%gagﬂf(cw) = max ¥(a, £, n)).

The examples in the literature typically use standard unrestricted gradient methods (e.g.
Newton-Raphson) to find the ML estimates under Ha.

Remark 4. Actually, the examples in the literature considered sampling plans that do not
include any unknown expected sample sizes. That is, there were no o parameters to estimate.
The current paper allows for unknown o to accommodate Poisson counts.

"There are two main limitations of the existing computational approach for likelihood-explicit
estimands. i) The approach is case specific: For each distinct estimand S(7), the explicit f must
be determined. This rules out general fitting algorithms. ii) The approach does not work for
likelihood-implicit estimands like v* and E(R;) — E{R;y) of Examples 3.1 and 3.2. It would not
work for estimands like the correlation coefficient and Goodman and Kruskal’s gamma.

With regard to likelihood-implicit estimands, a limitation of the algorithm of Tsimikas et al.
(2002} is that it is case-specific; it is specifically designed for estimands of the quadratic form
S(r) = 7TGTy along with product-multinomial sampling. Similarly, the algorithm implicitly
used in Lang (2005) was designed for the specific estimands in that paper.

The approach advocated in this paper avoids the existing limitations. It is related to the
constrained maximization approach of Tsimikas et al. (2002) and is & natural extension of
the algorithm used in Lang (2005). The idea is simple: Profile confidence intervals involve
the inversion of score or likelihood ratio tests of Hy : S(7) = A. Under mild conditions
on estimand function &, as described in the next section, the H, model with constraints

ha(7) = 5(7) - & =0 can be expressed as a muliénomial-Poisson homogeneous (MPH) model
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(Lang 2004). In this case, established MPH modeling results and fitting algorithms can be used
to compute unrestricted and restricted (under Ha) ML estimates of (o, 7), as well as the Wald,
score, and likelihood-ratio goodness-of-fit statistics. The MPH method also leads to simple
descriptions of the asymptotic distributions of these statistics. It follows that when the MPH
method is applicable, the inversion of the score and likelihood ratio tests of Ha : S(7) = A, or
equivalently the computation of the profile confidence intervals, is straightforward.

There are several advantages to using the MPH model approach, including: (i) It is applicable
for both likelihood-explicit and likelihood-implicit estimands; (ii) There is no need to specify
an explicit f for reparameterization; (iii) The score and likelihood ratio statistics are easily
evaluated by solving the Lagrangian restricted likelihood equations; (iv) There is no need to
analytically evaluate derivatives of S(7) as they can be numerically approximated; and (v)
There is no need to work on a case-by-case basis.

The practical advantage of the MPH model approach is that it lends itself to general algo-
rithms for computing profile confidence intervals for a broad class of estimands and a broad
class of sampling plans. As an example, consider the following...

General Algorithm for Computing a Profile Score Confidence Interval.

Step 1. Compute a Wald interval for S(7), as in (2). Let Awyn, and Aw,, be the

endpoints.
Step 2. Compute the lower profile confidence bound.

Step 2a. Using Aw,e, 85 a reference point, find A; and A, satisfying X%(y, i(A)) >
X2(1) > X?*(y, B(Ay)). Here, i(A) is the ML estimate of 4 under Ha, which can
be found using the MPH model fitting algorithm described in Lang (2004).

Step 2b. With A; and A; as starting estimates, use a bisection algorithm to solve
for Ay in X2(y, B(Aiow)) = x2(1). Each bisection iteration involves fitting an
MPH model.

Step 3. Using the same approach as in Step 2, determine an upper confidence bound

A,y that satisfies X2(y, i(Au)) = x2(1).

In Step 2a, it often works to choose A; and A; close to, but on either side of, Aw,p.

Similarly, in Step 3, it often works to choose A; and 4, close to, but on either side, of Ay A



Prefile Confidence Intervals 14

judicious choice of parameterization for the Wald interval can lead to better starting estimates
of the profile interval bounds.

Essentially the same algorithm works for profile likelihood confidence intervals; one need only
replace X by G? in Steps 2 and 3. The algorithm has been coded in R (Ihaka and Gentleman

1996; see also http://cran.r-project.org) and is available from the author upon request.

7 Applicability of the Interval Estimation Approach

The MPH-based computational approach outlined in the previous section is applicable provided

the models under Hju, viz.
Y ~ MP{}LlZ,ZF,n), ha(‘r) = S(T) —A=0

are multinomial-Poisson homogeneous (MPH) models. Lang (2004) defines an MPH model as
Y ~ MP(p|Z,Zp,n), h(p) = 0, where the constraint function h is Z homogeneous (i.e.
homogeneous with respect to the sampling plan) and sufficiently smooth and the constraints
h(p) = 0 are non-redundant. More formally, h must satisfy the four conditions Hy-H; of
Lang (2004). The next two subsections give conditions under which the constraint function A,

satisfies these MPH requirements.

7.1 Homogeneous Estimands and Constraints

Lang (2004) gives the following definition.
Definition 1: The function h defined on {x € R°: x > 0} is Z homogeneous, or, equivalently,

homogeneous with respect to the sampling plan (Z, Zr,n), if
h(D(Z)x) = G(7)h(x), ¥y > 0, ¥x > 0,

where G(v) is a diegonal matriz with i** diagonal element equal io ’yﬁ, for some k; €
{1,...,K} and some real number p;. In the special case when p; = 0 so h{(D(Z~)x) = h(x),
we say that h is 0-order Z homogeneous.

Both papers, Lang {2004) and Lang (2005), make use of several useful properties of homo-
geneous functions. Below, we give three different properties that are more directly useful for
the purposes of the current paper. Proofs are given in the Appendix.

Property 7.1: The function t defined as t(x) = D™ (ZZ7x)x is a 0-order 7 homogeneous
mapping of {x :x >0} onto T ={r:7 > 0,Z"7 = 1}.
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Property 7.2: To argue that h is Z homogeneous, we need only show the defining condition
holds for all v >0 and forx € T = {x: ZTx = 1,x > 0}.
Property 7.3: Let f be any function defined on 7. Define fo(x) = f(t(x)), where t(x) =
D™YZZ™x)x. Then (i) fy s 0-order Z homogeneous and (ii) fo(x) = f(x), Vx € 7. We say f;
is & O-order Z homogeneous version of f [over T).

Property 7.3 implies that every estimand S(7) has a 0-order Z homogeneous version, namely,

So{T) = S{t(r)). Therefore, the model under H
Y ~ MP(u|Z,Zrn), ha(t)=S(r)—A=0

is equivalent to

Y ~ MP{u|Z,Zp,n), haolp)= Solp) — A =0, (5)

where hpp is O-order Z homogeneous. That is, the homogeneity condition Hy in Lang {2004)
is satisfied for every possible estimand S(t). Here, we used the fact that p = D(Zo)T, so by:
0-order Z homogeneity, So{T) = Sp(is) and hence ha o(7) = hao{p).

7.2  Smooth, Non-Redundant Estimand and Constraint Functions

The previous subsection showed that the homogeneity condition Hs in Lang (2004) is satisfied
for every possible estimand S(7). The compatibility condition Hy of Lang {2004) is also always
satisfied because A is in Sy(7). Therefore, to argue that the model under H, is an MPH model,
one need only show that the constraint function ha g defined in (5) satisfies the remaining two
conditions in Lang (2004)-the smoothness condition H; and the full-rank condition Ha.
Exploiting the simple form of the constraint function ha o, it is easy to see that it will satisfy
the two conditions H, and H; in Lang (2004) if 0-order Z homogeneous Sy satisfies the following

two conditions:

(S1) Sp has continuous second-order derivatives af any x > 0; and

(6)
&5, .
BSC(;C) #Z0, x>0, :

Condition (82) implies that the set of constraints {ha p{t) = 0, Z™7 = 1} are non-redundant

(32)

(see Proposition 7 in Lang 2004). Tt also implies that the estimator of So(T) admits a non-
degenerate linear approximation.
It is important that the full-rank condition (S2) holds for a 0-order Z homogeneous version of

the estimand function, not just any version. As an example, consider a two-celled contingency



Profile Confidence Intervals 16

table with probabilities 7, and 7, that satisfy Zir = n + 1, = 1: that is, Z = 1. The
estimand function defined as S1(v) = 7¥ + 7} + 2n 7 satisfies condition ($2), but the 0-
order Z homogeneous version Sio(7)} = 1 does not. For this example, the model constraint
S1(T) = A imposes no additional constraint beyond the structural constraint 7, + 7, = 1. As
another example, the estimand function defined as S3(+) = 7,7, satisfies (S2), but the O-order Z
homogeneous version Syo(T) = 173 /(7 4+ 72)* does not; it has vanishing derivative at (1/2,1/2).
For this example, S2(7) = A does impose an additional constraint, but the linear approximation
for the estimator is degenerate when 7 = (1/2,1/2). In this case, higher-order approximations
are required and the MPH model results of Lang (2004) are not directly applicable.
Conditions (51) and (S2) along with the implicit function theorem imply that S(7) = A can
be locally expressed as 7 = (A, #) for some function f. For asymptotic purposes, conditions
(51) and (S2) really only need to be satisfied in a neighborhood of the true 7. Assuming
smoothness and the full rank condition over the larger regions ensures that ML fitting algorithms
based on iterative gradient methods are applicable. As an example, for the estimand § (r) =
7172 of the previous paragraplh, the theory is asymptotically applicable provided T (1/2,1/2).
Even when 7 # (1/2,1/2), however, the ML fitting algorithms would only be applicable if
the profile intervals do not include the problematic S;(7) value 0.25, which corresponds with

T =(1/2,1/2).

8 Useful Theoretical Results based on MPH Modeling

The results of the previous section are summarized in Theorem 8.1. This theorem gives condi-
tions under which the MPH results of Lang (2004) apply. The remainder of the section gives
other relevant corollaries and theorems.

Theorem 8.1. Suppose that counts y are realizations of Y ~ M P(u|Z,Zr,n). For every
estimand function S, there exists a 0-order'Z homogeneous version Sy. If this 0-order version
So satisfies conditions (S1) and (S2), then, for every candidate A, the model with constraints
ha(7) = S(T) — A =0 can be re-expressed as a multinomial-Poisson homogeneous model with
O-order constraints ha o(p) = So(p) — A = 0.

In practice, to automatically re-express the model with constraint function ha in terms
of a 0-order Z homogeneous version, one can simply use hpo{p) = ha(t(p)), where t(p) =

D™YZZ7 pt)p. That is, the estimand S(7) can be re-expressed as S(t(p)), where p = D(Zo)T
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is the vector of expected counts. That S(t(u)) equals S(r) follows because t(p) = t(7) by
Property- 7.1 and t(r)=7fort € 7.

8.1 Approximate Chi-Square Result

Corollary 8.1. Under the conditions of Theorem 8.1 and for every candidate value of A, the
goodness-of-fit statistics W2(Y, A), X*(Y,G(A)), and G2(Y, [i(A)) for testing Ha : S(1) = A
have o central x*(1) null limiting distribution.

Corollary 8.1 implies that WC'I,(y), PSCI(y), and PLCI{y) of (1) are indeed approximate

1 — & level confidence intervals when the conditions of Theorem 8.1 are satisfied.

8.2 Estimability Result

It is of interest to know when an estimand S{sr) can be estimated using data that do not come
from the joint distribution 7, but rather from conditional distributions with table probabilities
T = t(m) = D™YZZ n)m. For example, consider (4, B) ~ {m;,i=1,2, =1,2,3)} and the
global odds ratio estimand

OddS(A = 2|B 2 2) _ 7T11(7f'22 + 7I'23)

odds(A=2|B <2) mu(mz+ma)

5()

An interesting question is this: If data were collected via stratified random sampling from the
A|B = j distributions could S(7) be estimated? As we shall see in Example 8.2 below, the
answer is ‘no’ in that the A|B = j table probabilities t(«) do not identify a unique value of
S(m).

The following definition of estimability is based on the idea that an estimand S() should
be considered estimable using table probabilities only if each possible table probability vectar
identifies a unique value of S(7r). The definition can be shown to be equivalent to the one given
earlier in Lang (2004).

Definition 2. Estimand S(m) is Z estimable [over @ = {m : 7 > 0,177 = 1}] if S(x) is a
function of the table probabilities t(m) [over ).

Ancther way to state the definition is that estimand S(7r) is estimable using data from the
unrestricted model M P{u|Z, Zp,n) if S(7) is a function of the table probabilities t(). The
model MP(u|Z, Zp,n) is unrestricted in that the table probabilities t(s) are free to take on
any value in the set 7 defined in (4); equivalently the joint probabilities in 7 are free to take

on any value in £,
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The phrases in brackets in the definition can be omitted for the purposes of the current paper.
They are included to anticipate a generalized version of estimability that will be described in a
subsequent paper that discusses model-based estimation of S{#r), which uses restricted versions
of MP{pul|Z,ZF,n).

Using the definition to show that S(7r) is Z estimable is not, always so straightforward because
we must show that t(m;) = t(m,) implies that S(m,) = S(m2). To address this difficulty, Lang
(2004) gave a relatively simple sufficient condition for estimability. Here we also give a relatively
simple necessary condition.

Theorem 8.2: Suppose that S is defined on Q= {m: 7 > 0,17x = 1} and let Sy be a 0-order
1 homogeneous version of S. Then the estimand S() is Z-estimable if and only if Sy is 0-order
Z-homogeneous.

The necessary condition of Theorem 8.2 gives a relatively simple way to establish non-
estimability. It also lends itself 10 a computer-Based approach to detecting that an estimand
S(mr) is not Z estimable. Specifically, one could compute |Sp(D{Zv)x) ~ Sy(x)| for several
randomly selected y and x values. If the difference is ever non-zero then S is not Z estimable.

Theorem 8.2 implies that if S() = S(t{m)), where t(w) = D™HZZ? 7)7 is a vector of table
probabilities, then S() is Z estimable. This follows because S is both O-order 1 and O-order
Z homogeneous. Theorem 8.2 also leads directly to the following corollary.

Corollary 8.2: Under the conditions of Theorem 8.2, if S(7) is Z-estimable then S(w) =
So(T), where T = t(r) is the vector of table probabilities and Sy is any 0-order 1 homogeneous
version of S,

Corollary 8.2 shows explicitly how Z-estimable S(7) is a function of the table probabilities
t(w). By invariance of MLE's, Corollary 8.2 implies that the unrestricted MLE of S{m) is
So{T), where 7 is the MLE of the table probabilities.

Ezample 8.1. Let A and B be two dichotomous random variables with joint distribution
7 = (11, T2, a3, T2). Two estimands of interest are the odds ratio S) () = myymee/(mi07m2))
and the relative risk Sy(m) = (my1/m14)/(m21/72+). Counsider the simple random sampling plan,

row stratified (B|A) random sampling plan, and column stratified (4| B) random sampling plan.



Profile Confidence Intervals 19

The corresponding population matrices are, respectively,

1 10 10
1 10 01
Z, = e Z; = 01l and Z; = 10
1 01 01

It is easy to verify that the odds ratio is 0-order homogeneous with respect to all three of
the sampling plans. It follows that S)(#) is estimable using data from any of these three
sampling plans; this is a well known result. Because ) is a 0-order 1 homogeneous version of
itself and becanse Si{7r) is estimable for all three sampling plans, Corollary 8.2 implies that
Si{m} = S;(7), where  is the vector of table probabilities for any of the three sampling plans.

The relative risk estimand function Sy is O-order Z; and O-order Z, homogeneous. It is not,

however, O-order Z3 homogeneous because D(Z3y)x = (71211, YoT12, V1221, YaZoz) implies that

Sp(D(Z3v)x) = nzu/ (Nt + 1)
FYIx?l/(’Ylle + '}'25.."‘22)

and as an example, for v = (1,2) and x = {2,1,1,1),

_2/(2+2)
C1/(1+2)

it follows that the relative risk estimand Sy({w) is estimable using data from a simple random

2/3
# 72" Sa(x).

53(D(Z3v)x)

sample or a row stratified sample. The necessary condition of Theorem 8.2 implies that it is
not estimable using data from the column stratified sample.

Ezample 8.2. Consider (A,B) ~ {my,1 = 1,2, 7 = 1,2,3} and the global odds ratio

estimand _
S(‘H‘) _ Od-dS(A = 2}3 Z 2) _ 7‘(’11(1'['22 + 71-23)
T odds(A=2|B <2)  wa(mp+ms)

For the row stratified (B|A) sampling plan with table probabilities T, it is straightforward to

directly show that S(m) = 5(7) and hence S(m) is estimable. Alternatively, it is easy to verify
that Theorem 8.2’s sufficient condition for estimability holds.

In contrast, the global odds ratio S(#) is not estimable using data from a column strasified
(A|B) sampling plan. To see this, first note that S is 0-order 1 homogeneous. By Theorem
8.2, the non-estimability will be proven once we show that S is not O-order homogeneous with
respect to the column stratified sampling plan. The population matrix for column stratified

sampling plan has the form

77 =

OO =
o = O
= O O
T e B S
o o O
= O S
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Thus, D(Z’Y)X = [’h$11,725612,’735813,’YJ$21,72$22-.’YS$23}T and

S(D(Zvy)x) = nZu (T + 735’323)'
T1Z21(v2%12 + YaZ1s)

But, as an exampie, for y = (1,1,2) and x = (1,1,1,1,2,3),

1{2 +6)
1{1-+2)

1(2 + 3)

S(D(Zy)x) = T

7 = 5{x),

so S is not O-order Z homogeneous.

Erample 8.3. Let A and B be ordinal variables with joint distribution probabilities in
7. The Pearson correlation estimand S(w) is not estimable under row or column stratified
sampling. The non-estimability can be shown using the necessary condition of Theorem 8.2.
In particular, it is straightforward to show that Sy, a O-order 1 homogeneous version of 5, is
not O-order homogeneous with respect to the row or column sampling plan. Alternatively, it
Is easy to see by example that table probabilities for the row or column sampling plan do not
uniquely identify a correlation, S(), value. As an example, in the 2 X 2 table setting, the two
joint distributions ) = (4,1,1,4)/10 and 7@ = (4,1,10,40)/55 correspond with the same
row conditional distributions, viz. t{(m)) = t(x®) = (0.8,0.2,0.2,0.8). However, for {0,1}
row and column scores, S(m!)) = 0.6 # 0.396 = S(xr?).

8.3 Sampling Plan Invariance Results:

Suppose that data y «— MP(o,T|Z,Zp,n) are to be used to estimate S(7). Unless stated
otherwise, assume throughout this section that S is a 0-order Z homogeneous version of S that
satisfies conditions (S1) and (S2) of (6). This means that the model under Hy : S(7) = A can
be expressed as an MPH model.

Definition 3 (MPH Estimation Object). The MPH estimation object, denoted
est{S(7),y,(Z,2Zp,n)}, is composed of the following pieces of information: (i) Estimand S(T);
(i) ML estimate S(¥) and approzimate standard error ase(S(F)); and (iii) Confidence intervals
WCI(y), PSCI(y), and PLCI(y) as given in (1).

Theorem 8.3 (Sampling Plan Invariance). Consider the MPH estimation object
est[S(7),v,(Z,Zr,n)] and an olternative data model y — MP(c*, T*|Z*, Z%,n*). If Sy is

0-order Z* homogeneous then

est|S(7),y,{Z,Zr,n)] = est[So(T),y,(Z*, ZF, n%)).
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‘The proof of Theorem 8.3, which is outlined in the Appendix, is based on general equivalence
results for MPH models as described in Lang (2004). The equivalence of the MPH estimation
objects implies that (i} S(r) = So(7*); (il) S(F) = Sp(F*), ase(S(F)) = ase{Sp(T*)); and (iii)
WCI(y) =WCL(y), PSCI(y) = PSCI*(y), and PLCI(y) = PLCI*(y).

Corollary 8.3. For convenience, the MPH estimation object est|S(r),y,(Z,Zr,n)] can be

computed using a full-multinomial or an independent Poisson data model. In symbols,
est[S(7),y, (Z, Zp,m)] = est[So(m),y,(1,1,17y)] = est[So(m), ¥, (1,0,0)].

Corollary 8.3 follows immediately from Theorem 8.3 because when Sy is O-order Z homogeneous
it must also be O-order 1 homogeneous.

Ezample 8.4. If S(m) is Z estimable then Theorem 8.2 implies that Sy, a 0-order 1 homoge-
neous version of 5, is also 0-order Z homogeneous. Corollary 8.3 implies that est!S(r),y,(Z, Zp, n))
can be more simply computed using the full-multinomial estimation object est[Sp(w), ¥y, (1,1, 17y)]
or the independent-Poisson estimation object est[Sy(w),y, (1,0, 0)].

Ezample §.5. Let A and B be dichotomous random variables with P(A = i,B = j) =
Ty b, 7 = 1,2, Suppese we wish to estimate the odds ratio S(m) = myym9a/(m12ms;) based on
data coming from a row (B|A) stratified sampling plan. Because S(7) is estimable with these
data, Example 8.4 implies that for computing the Wald or profile confidence intervals, we can
treat the data as though the components were independent Poisson realizations. We also would
get the same results if we assumed the data came from a single four-celled multinomial.

Ezample 8.6. Suppose that 5 x 2 Poisson table counts y « MP(g,7|1,0,0) are to
be used to estimate the conditional probability S(m) = my/m,. Theorem 8.3 implies that
est|m11 /714,y (1,0,0)] = est[r];,y, (Z*,Z*,0n%)], where Z* corresponds with the row stratified
sampling plan. In words, the independent Poisson estimation object for the conditional proba-
bility is identical to the product-binomial estimation object. The result follows because Sy = S
is 0-order 1 and Z" homogeneous and Sy(7*) = 7}, /77, = 75;. Note that the product-binomial
estimation is arguably more straight-forward for this example,

Ezample 8.7. Suppose that subjects are accrued over a period of one year, and each subject
is cross-classified on sex and two other ordinal variables A and B. The resulting counts can be
modeled as y «— M P(s,7|1,0,0), where ¢ is the expected number of subjects accrued annually
and 7m; = P(SEX = k,A =4, B = j). The estimand of interest is the difference between

the conditional Pearson correlations, S(rr) = p; — 02, where p, = corr(A, B|SEX = k). More
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specifically, if {a;} and {b;} are the A and B scores, then
220 2o agby (&L) - [Zz a; (mm- )} [ZJ b (.’E&tz)]

" \/ (St (2 - [ (25)]") (8 (2220) - [ (220)]7)

It is straightforward to see that S(m} is both O-order 1 homogeneous and 0-order Z homo-

k=1,2.

geneous, where Z corresponds with the SEX-specific stratified sampling plan. Theorem 8.3
implies that est[S(w),y, (1,0,0)] = est[S(7),y, (%, Z,n)], where the table probabilities are de-
fined as Tri; = Frij/Mea- I words, asymptotic inference about the difference between the
~conditional correlations is the same whether we treat the data as independent Poisson or as

product-multinomial.

9 Numerical Examples

9.1 Example 3.1 Revisited

Consider the data displayed in tabular form in Example 3.1. These data can be collected in
the vector y = (25,25, 12,0,1,3) and modeled as product-multinomial:

111000

— r~ T=7p=
vy — Y ~ MP(c,7|Z,%Zp,n), where ZT = Z 000111

and n = (62,4).

Note that the table probabilities are defined as 7; = 7, /m;4, where m;; = P(A = i, B = j),
and both expected sample sizes are known a priori, viz. o = n = (62,4).

Because the unrestricted ML estimate of 7 is the vector of sample proportions ¥ = {25/62,
25/62,12/62,0/4,1/4,3/4), the ML estimate of v* = S(7) is S(F) = 0.9358. The maximum
likelihood estimate of 23 = S;(7) does not exist because the sample proportion 7o, = 0. An
asymptotically equivalent estimate is S1{T) = 6.71, where ¥ is the vector of sample proportions
based on the original counts plus 0.5. The maximum likelihood estimate of 3 = S,(7) is
Sa(F) = 12.50.

Table 1 gives profile score, profile likelihood, and Wald confidence intervals for the three
estimands v* = S(7), Q1 = Si(7), and Qy = Sy{r). For illustrative purposes, two Wald
intervals are computed for each estimand. The first Wald interval is based on W;l, where g; is
the identity function and the other Wald interval is based on W2, where g, is the logit function
for v* and the log function for the global odds ratios. The Wald intervals for €; used modified
data of the form ‘original count + 0.5." In contrast, the profile intervals for )y required no such

data modification because the unrestricted ML estimates were not used in the computation.
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Table 1. Case-Control Data: Estimates and Nominal 95% Confidence Intervals

Profile Profile
Estimand Estimate Score Likelihood Wald {g1) Wald (ga)
e 0636  [0.525, 0.990]  [0.610, 0.096] [0.813, 1.058] [0.655,0.991)
0 6.711  [0.661, oo)  [L.042, oco) [-13.086, 26.507] [0.351, 128.221)!
0, 12,500 [1.598, 93.771] [1.460, 265.326]  |-16.865, 41.865]  [1.193, 130.967]

' These intervals used modified data of the form ‘original count + 0.5

For each of the estimands, the four confidence intervals are quite different, which is hardly
unexpected in this sparse-data setting. All three of the Wald (g,) intervals include out-of-range
values; the intervals include v* values bigger than 1 and global odds ratio values less than 0.
This highlights one of the effects of poor choice of parameterization. The Wald (g,) intervals
use better parameterizations that do not lead to out-of-range values.

In contrast to the Wald (g;) interval, the profile intervals and the Wald (g,) interval for
7" are asymmetric about the point estimate 0.9358; this is intuitively reasonable because the
ML estimator of v* undoubtedly has a distribution that is skewed to the left, away from the
upper bound of 1.0. Although the four intervals for +* are quite different, they all lead to
the conclusion that the estimate 0.9358 is statistically higher than 0.50; that is, there is a
statistically significant association between smoking and myocardial infarction.

In contrast to the Wald (g:1) interval, the profile intervals and the Wald (g,) interval lead
to the same conclusion that the estimate of the global odds ratio Q, is statistically bigger
than 1; that is, there is a statistically significant association between smoking and myocardial
infarction. The conclusions regarding the statistical significance of the ), estimate are mixed.
The score and Wald intervals lead to a conclusion of non-significance, whereas the likelihood

ratio interval leads to a conclusion of significance.

Estimability of a Modified Gamma Measure. The estimand v* was referred to as a
modified gamma measure of association. To see why this is a reasonable label consider the

following: The estimand 4* can be written as

where C(1} = 23, Zj Tij (Zh>i 2k>j Thk) and D(7) = 2%, Ej Tij (Ehm' Ekq‘ Thk)' Er =
(711, M2, ..., 723) is the joint probability distribution of (A, B), then C{m) and D(=x) are

the probabilities of concordance and discordance used in the computation of Goodman and
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Kruskal’s gamma. For Example 3.1, S(m) = C(w)/[C(m) + D(7r)] is estimable because S is 0-
order homogeneous with respect to the sampling plan. The modified gamma, label is reasonable
because Corollary 8.2 implies that v* = S(r) = S(m).

Interestingly, using the necessary condition of Theorem 8.2, it is straightforward to show
that modified gamma S(7) would not be estimable if there were more than two rows in the

row stratified sampling scheme.

Invariance Result. Let S5(7) = S(t(7)) be the 0-order Z homogeneous version of S(7) =

*

.

independent Poisson estimation object est{So(), ¥y, (1,0,0)). This sampling plan invariance

Corollary 8.3 implies that the estimation object est[y*,y,(Z,Zp,n)] is identical to the

result was exploited in the actual computations. Similarly, the estimation objects for the other

estimands were also computed using the independent Poisson version.

9.2 Example 3.2 Revisited

Consider the data displayed in tabular form in Example 3.2. These data can be collected in

the 25 x 1 vector y = (0,0,0,...,2,20) and modeled as multinomial:
Yy Y~MP(o,7|Z,ZF,n), where Z = Zp = 1,5 and n = 25.

Note that the table probabilities are defined as 7; = w5, where m; = P(A =4, B = j), and the
expected sample size is known a priori, viz. ¢ = n = 25.

Because the unrestricted ML estimate of T is the vector of sample proportions 7 = (0 /25,0/25,
0/25,...,2/25,20/25), the unrestricted maximum likelihood estimates of the estimands are as
follows: E(R:) — E(Rp) = S(7) = 0.20, E(B) = S1(7) = 484, E(Ry) = Sy(F) = 4.64,
D(Ry) = S5(%) = 0.2176, and D(R,) = S,(#) = 0.3424.

Table 2 gives profile score, profile likelihood, and Wald confidence intervals for the five
estimands. The Wald intervals are based on the Wald statistic Wyz, where ¢ is the identity

transformation.
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Table 2. Golf Club Ratings: Estimates and Nominal 95% Confidence Intervals

Profile Profile
Estimand Estimate Score Likelihood Wald
E(Ry) — E(Ry) 0.20 [-0.3594, 0.7061) [-0.1331, 0.5193] [0.0079, 0.3920]
E(Ry) 4.84  [4.3286, 4.9455]  [4.5209, 4.9601] 4.6584, 5.0215)
E(Ry) 4.64 [4.0412, 4.8501] {4.1417, 4.8776] [4.2915, 4.9885]
D(Ry) 0.2176  [0.0806, 0.4619)  [0.0610, 0.4421| [0.0103, 0.4249)
D(R,) 0.3424 [0.1659, 0.5691] [0.1451, 0.5583] [0.1187, 0.5661]

Because E(R;) and E(R;) are evidently close to the upper limit of 5.0, it is intuitively
appealing that the profile intervals are asymmetric about the point estimate. In contrast, the
Wald intervals for the means are symmetric about the point estimates. Not surprisingly, the
Wald interval for F(R;} includes out-of-range values.

The profile intervals are a bit narrower than the respective Wald intervals for the dispersion
estimands. In contrast, the profile intervals are quite a bit wider than the Wald interval for
the difference between the two mean ratings. A small-scale simulation study of a comparable
setting hints that for the difference in mean ratings, the wider profile intervals are in fact a
bit conservative in that the coverage probabilities are higher than the nominal 0.95; the Wald
interval for the difference had coverage probability that was just a bit lower than the nominal

0.95.

10 Discussion

The MPH interval estimation method described in this paper is directly applicable for many
of the contingency table estimands (aka parameters) encountered in practice. Exceptions in-
clude estimands that are non-smooth, estimand functions that have vanishing derivatives, and
estimands that cannot be expressed as S(r), where S is a known estimand function. The com-
putational algorithm that carries out the MPH interval estimation only requires the user to
input the table counts y, the sampling plan (Z, Zp,n), and the estimand function . The algo-
rithm has been coded in R (Thaka and Gentleman 1996; see also http://cran.r-project. org)
and is available from the author upon request.

‘The examples in Section 9 used very sparse tables to emphasize the potential for large
and practically meaningful differences among the three confidence intervals considered herein.

Although the profile intervals may usually have better coverage properties than the Wald in-
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tervals, especially in these sparse table settings, the researcher still needs to be mindful that
the intervals are only as good as the asymptotic approximations upon which they are based.

The estimability results of Section 8.2 are not just of theoretical interest; they are very
important in practice. Because all contingency tables of counts look superficially similar and
because most contingency table software packages treat them all similarly, it is all ¢oo easy to
compute and report “estimates” of non-estimable parameters. The estimability results highlight
the need to recognize the sampling plan that generated the table counts. For example, most
contingency table software will not hesitate to output estimates of both the gamma and Pearson
correlation coefficients for any 2 x 3 table. If the ambiguously labeled “2 x 3 table” happens to
be the result of a single random sample, there is no problem, as both gamma and the Pearson
correlation are estimable in this case. However, for row stratified sampling, only gamma is
estimable, and this is only because there are only two rows. For column stratified sampling,
neither gamma nor the Pearson correlation are estimable.

This paper considered only non-model-based estimation of contingency table parameters. In
particular, profile intervals were based on inverting tests of Ha : S(7) = A vs. unrestricted
Ka : S(T) # A. When there is good reason to believe that a parsimonious model, say M,
holds or nearly holds, a more efficient model-based estimate of S(7) could be considered. In
this case, for example, one could compute profile likelihood intervals by inverting tests of
Hj : [Mand S{T) = A] vs. restricted K3 : [M but S(7) # A]. Specific examples of model-
based profile interval estimation appear in Gart (1985) and Lang (2005). A more general

description of model-based interval estimation will be given in a subsequent paper.
11 Appendix

11.1  Proofs of Properties 7.1-7.3

Proof of Property 7.1: We must show (i) Vx > 0,t(x) € 7 (i) V7 € 7,3x > 03 t(x) = 7
and (iti) t is O-order Z homogeneous. The proofs will make repeated use of the following
property of population matrices Z: For any v > 0, Z'D(Z~) = D(~)Z”.

Proof of (i). For any x > 0, t(x) > 0 and, letting v = 1/27x,

Z7t(x) = Z'D N (ZZ7x)x = ZTD(Zv)x = D(v)Z7x = D Y(ZTx)Z7x = 1.

Thus, t(x) € 7. This proves (i).
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Proof of (ii). Let 7 € 7. Notice that for x = 7, t(x) = 7 and x > 0. This proves (ii).
Proof of (iii). Let v > 0 and x > 0. It follows that

t(D(Zv)x) =D (Z2TD(Z)x) D(Zvy)x = D! (ZD()Z7x) D(Zy)x
=D (D(Zy)22"x) D(Zv)x = D™ }{Zy)D"}(Z27x)D(Z~)x
=D HZZTx)x = t(x).
This proves (iii) and hence Property 7.1 is proven. m
Proof of Property 7.2: Suppose that h(D(Zv)7) = G(y)h(7),¥y > 0,¥7 € T. Let v >0

and x > 0. Define t(x) = D"'(ZZ"x)x. Property 7.1 shows that t(x) € 7. Moreover,

h(D(Zv)x) =h (D(Z'y)D(ZZTx)t(x)) = Gy Z"x)h(t(x)

G(7)G(ZTx)h(t(x)) = G(v)h(D(ZZTx)t(x)) = G(y)h(x).

Il

This proves the result. -
Proof of Property 7.3: Let v > 0 and x > 0. Note that

f(D(Z7)x) = £((D(Z)x)) = £(t(x)) = £o(x).

This proves (i). Now, for any x € 7, we have t(x) = x. Thus, fo(x) = f(t(x%)) = f(x), vx € 7.
This proves (ii). -

11.2 Proof of Theorem 8.2.

First note that there always exists a 0-order 1 homogeneous version of §. For example, Sp(w) =
S(m/177) works. Throughout the proof, Sy is any O-order 1 homogeneous version of S.
Proof (Sufficiency): Sy is O-order Z homogeneous implies that So(D(Zy)x) = Sp(x), ¥y >
0,¥x > 0. Let m, 73 € O satisfy t(m1) = D™YZZ7m))m; = D™YZZ T 75)m, = t(7,). Then
S(m1) = S(m1) = So (D(ZZTm)D‘l(ZZTm)n-z)

~ S (D(Z(%%))m) = Sp(ma) = S(ma).

The second last equality follows because Sy is 0-order Z homogeneous. It follows that S(r) is
a function of + = t(7r) alone.

Proof (Necessity): Assume that S(n) is a function of t(s) alone, but Sp is not O-order Z
homogeneous. We prove the necessity result by showing that this leads to a contradiction.

If Sy is not O-order Z homogeneous then there exists a v > 0 and a x > 0 such that

So(D(Z~)x) # So(x). Because Sp is 0-order 1 homogeneous,

I >0,x>0,3 5 (D(Z‘y)%{) 2 SU(%).
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[Note: This follows because SO(T};:-D(Z')/)X) = Sp(D(Z+)x) and SQ(‘:'[%;X) = Sp{x).] Now

m = x/1%x lies in 2. Thus,
3y >0,m €Q,3 S(D(Zvy)m) # So(m,).

Again, because Sp is 0-order 1 homogeneous, this implies that

D{Z~)m,

v >0, 2,5 85 | —r~i—
Y m; € = 0(1TD(27)W1

) # So(mm).

Let my = D(Z§)r,, where § = TTD_(’YZT)’)T; i.e. 7y, is the argument of Sy on the left hand side
1

of the previous inequality. Note that , lies in €, so we have
So(ma) £ Spmy), for my,my € (. {7
But, owing to the 0-order Z homogeneity of function t defined as t(x) = D™YZZTx)x, we have
t(m) = D™ZZ m\)m; = DHZZTD(Z6)m,)D(Z8)m, = D22 my)my = t(my),

which implies that S(m;) = S{m3) because it was assumed that S(m) is a function of t{m)
alone. Furthermore, because Sy is a O-order 1 homogeneous version of S, we have that S, (my) =
S(m1) = S(ma) = So(w), which contradicts (7). This proves the necessity result and hence

Theorem 8.2 is proven. n

11.3 Proof of Theorem 8.3.

We need to show that (1) S(7) = Sy(7*); (i) S(F) = So(F"), ase(S(F)) = ase(S3(F*)); and
(iii) WCly(y) = WCI;(y), PSCI(y) = PSCI*(y), and PLCI(y) = PLCI*(y).

To prove (i), note that S(r) = So(T) = Sy(w) because Sy is a O-order Z homogeneous
version of 5. But 5y is also 0-order Z* homogeneous and 7* = D™YZ*Z T 7Y, so it follows
that So(77) = Sp(w). Therefore, the two estimands S(r) and So(r*) are identical.

To prove (ii), note that the two unrestricted MPH models y «— M Plo,7|Z4,Zp,n) and y —
MP(o*,7*|Z", Z}, n*) are equivalent in the formal sense described in Lang (2004); specifically,
they both are members of the equivalence class denoted by £(0,y). It follows that numerically
i = " and hence

S(7) = So(7) = Soli) = Sol@") = Sol").
The string of equalities exploit the fact that fi = D(Z&)7 and S, is O-order Z homogeneous,

—~

and i = D(Z"6*)7" and Sy is 0-order Z* homogeneous. Now because S, satisfies (S1) and
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(S2) of (6), it follows that Sy(fi) is a U-order Z homogeneous statistic as defined in Lang
(2004). Similarly Sp(@*) is a 0-order Z* homogeneous statistic. Because p and i* are based
on equivalent models, Corollary 3 of Theorem 8 in Lang (2004) states that the approximate
distributions of So(f) = S(F) and So{fi*) = Sp(7*) are identical. This implies that numerically
ase(S(7)) = ase(Sp{T*)). It is worthwhile noting that Corollary 2 of Theorem 8§ in Lang
(2004) implies that the squares of the numerically identical approximate standard errors, namely

avar{S(7)) and avar(Sy(7")), have particularly simple forms:

~ ASy(F). . BST(#
avar(S(¥)) = __83'(5" )N lD(‘r)———g’ﬁ )

. BS0(F™) o1 s ST (7
avar(Sy(F*)) = —a(;_—(:;,lN D )TO:“E_)’

where N = D(ZZ7y) and N* = D(Z*Z*Ty). The derivation of these approximate variance
forms used the identity 95y()/0u" = (8Sp(7)/87T)D~}(Za) and the fact that & = ZTy for
MPH models.

To prove (iii), first note that the arguments in the previous paragraph directly generalize as
follows: For differentiable g, g(S(7)) = g(S(#*)) and ase(g(S(F))) = ase{(g(So(7"))). These
equivalences imply that WCI,(y) = WCI . (¥).

The model y <~ MP(a,T|Z,Zp,n) under Hp : S(T) = A can be specified using the 0-order
Z homogeneous constraint h{u) = Sp(p) — A = 0. The model y — MP(o*, 72", 25, n*)
under Hy : Sp(7*) = A can be specified using the 0-order Z* homogeneous constraint hp*) =
So(p”) — A = 0. Thus, the two restricted models are MPH models that use the identical
constraint function. That is, in the formal sense of Lang (2004), these two MPH models are
equivalent and are members of the equivalence class £ (f,y). The equivalence results of Lang
(2004) imply that the restricted model ML estimates are numerically identical: A(d) = gr(A);
this means that the two score statistics are numerically identical and the two likelihood ratio
statistics are numerically identical. Moreover, the score and likelihood ratio statistics have (1)
limiting null distributions for both models. It immediately follows that PSCT (y) = PSCI'(y)
and PLCI(y) = PLCI*(y). n
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